Qualifying Exam Complex Analysis May, 2018

1. Prove that there exists a unique entire function f that satisfies $f(z)-z f^{\prime \prime}(z)=1$.

Hint: Consider the power series expansion of f. Note that you need to show that the series does converge at every point in the plane.
2. Let f and g be two entire functions. Suppose that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$. Prove that there is a constant $C \in \mathbb{C}$ with $|C| \leq 1$ such that $f(z)=C g(z)$ for all $z \in \mathbb{C}$.
Hint: Consider the function f / g.
3. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\log x}{x^{4}+1} d x
$$

4. Let f be an injective analytic function defined on $\mathbb{C} \backslash\{0\}$. Prove that there is some $w_{0} \in \mathbb{C}$ such that $f(\mathbb{C} \backslash\{0\})=\mathbb{C} \backslash\left\{w_{0}\right\}$.
5. Let $\left(f_{n}\right)$ be a sequence of analytic functions on a domain U, which is uniformly bounded. Assume that for each $z \in U$, the sequence $\left(f_{n}(z)\right)$ converges. Show that there is a function f analytic on U such that $\left(f_{n}\right)$ converges to f uniformly on every compact subset of U.
