Qualifying Exam Complex Analysis May, 2018

- 1. Prove that there exists a unique entire function f that satisfies f(z) zf''(z) = 1. Hint: Consider the power series expansion of f. Note that you need to show that the series does converge at every point in the plane.
- 2. Let f and g be two entire functions. Suppose that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Prove that there is a constant $C \in \mathbb{C}$ with $|C| \leq 1$ such that f(z) = Cg(z) for all $z \in \mathbb{C}$. Hint: Consider the function f/g.
- 3. Evaluate the integral

$$\int_0^\infty \frac{\log x}{x^4 + 1} \, dx.$$

- 4. Let f be an injective analytic function defined on $\mathbb{C} \setminus \{0\}$. Prove that there is some $w_0 \in \mathbb{C}$ such that $f(\mathbb{C} \setminus \{0\}) = \mathbb{C} \setminus \{w_0\}$.
- 5. Let (f_n) be a sequence of analytic functions on a domain U, which is uniformly bounded. Assume that for each $z \in U$, the sequence $(f_n(z))$ converges. Show that there is a function f analytic on U such that (f_n) converges to f uniformly on every compact subset of U.